Antisense oligonucleotide therapy rescues disruptions in organization of exploratory movements associated with Usher syndrome type 1C in mice.

نویسندگان

  • Tia N Donaldson
  • Kelsey T Jennings
  • Lucia A Cherep
  • Adam M McNeela
  • Frederic F Depreux
  • Francine M Jodelka
  • Michelle L Hastings
  • Douglas G Wallace
چکیده

Usher syndrome, Type 1C (USH1C) is an autosomal recessive inherited disorder in which a mutation in the gene encoding harmonin is associated with multi-sensory deficits (i.e., auditory, vestibular, and visual). USH1C (Usher) mice, engineered with a human USH1C mutation, exhibit these multi-sensory deficits by circling behavior and lack of response to sound. Administration of an antisense oligonucleotide (ASO) therapeutic that corrects expression of the mutated USH1C gene, has been shown to increase harmonin levels, reduce circling behavior, and improve vestibular and auditory function. The current study evaluates the organization of exploratory movements to assess spatial organization in Usher mice and determine the efficacy of ASO therapy in attenuating any such deficits. Usher and heterozygous mice received the therapeutic ASO, ASO-29, or a control, non-specific ASO treatment at postnatal day five. Organization of exploratory movements was assessed under dark and light conditions at two and six-months of age. Disruptions in exploratory movement organization observed in control-treated Usher mice were consistent with impaired use of self-movement and environmental cues. In general, ASO-29 treatment rescued organization of exploratory movements at two and six-month testing points. These observations are consistent with ASO-29 rescuing processing of multiple sources of information and demonstrate the potential of ASO therapies to ameliorate topographical disorientation associated with other genetic disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness

Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns1. Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells2. Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention3–5. Here we show that hearing and vestibular...

متن کامل

The Efficiency of CD40 Down Regulation by siRNA and Antisense ODN: Comparison of Lipofectamine and FuGENE6

Background: Dendritic cells (DCs) are ideal accessory cells in the field of gene therapy. Delivery of DNA and siRNA into mammalian cells is a useful technique in treating various diseases caused by single gene defects. Selective gene silencing by small interfering RNAs (siRNAs) and antisense oligodeoxynucleotides (ODN)s is an efficient method for the manipulation of cellular functions. An effic...

متن کامل

Inhibition of IL-13 by Antisense Oligonucleotide Changes Immunoglobulin Isotype Profile in Cultured B-Lymphocytes

The link between IL-13 and bronchial hyper-responsiveness has brought this cytokine as a potential therapeutic target for asthma and allergic diseases. At the present study, we address the role of B cell derived IL-13 in the IgE and other immunoglobulin development. Antisense oligo for human IL-13 m-RNA was used to study IgE down regulation. Human B-lymphocytes were purified by positive selecti...

متن کامل

Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models.

Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models ...

متن کامل

Terpene-loaded liposomes and isopropyl myristate as chemical permeation enhancers toward liposomal gene delivery in lung cancer cells; A comparative study

Gene therapy is in its development stage as a novel method for cancer treatment. Liposomes look promising as gene delivery vectors; however, investigations have shown that these vesicles are not doing well in some cases. It was decided here to investigate the possibility of augmentation of liposomal gene delivery by chemical penetration enhancers.Cationic liposome containing antisense oligonucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Behavioural brain research

دوره 338  شماره 

صفحات  -

تاریخ انتشار 2018